AutoAudio: Deep Learning for Automatic Audiogram Interpretation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Incremental Model Learning for Scene Interpretation

In this paper, we investigate automatic model learning for the interpretation of complex scenes with structured objects. We present a learning, interpretation, and evaluation cycle for processing such scenes. By including learning and interpretation in one framework, an evaluation and feedback learning is enabled that takes interpretation challenges like context and combination of diverse types...

متن کامل

Deep Learning for Automatic Summary Scoring

Automatic summary scoring is used very often by summarization system developers to test different algorithms and to tune their system. We have developed a new approach based on representation learning, using both unsupervised and supervised learning components, to score a summary based on examples of manually evaluated summaries. Our deep learning approach greatly surpassed ROUGE in terms of co...

متن کامل

Information Theoretic Interpretation of Deep learning

We interpret part of the experimental results of Shwartz-Ziv and Tishby [2017]. Inspired by these results, we established a conjecture of the dynamics of the machinary of deep neural network. This conjecture can be used to explain the counterpart result by Saxe et al. [2018].

متن کامل

Learning Robust Features using Deep Learning for Automatic Seizure Detection

We present and evaluate the capacity of a deep neural network to learn robust features from EEG to automatically detect seizures. This is a challenging problem because seizure manifestations on EEG are extremely variable both interand intra-patient. By simultaneously capturing spectral, temporal and spatial information our recurrent convolutional neural network learns a general spatially invari...

متن کامل

Automatic Bridge Bidding Using Deep Reinforcement Learning

Bridge is among the zero-sum games for which artificial intelligence has not yet outperformed expert human players. The main difficulty lies in the bidding phase of bridge, which requires cooperative decision making under partial information. Existing artificial intelligence systems for bridge bidding rely on and are thus restricted by human-designed bidding systems or features. In this work, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Medical Systems

سال: 2020

ISSN: 0148-5598,1573-689X

DOI: 10.1007/s10916-020-01627-1